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Abstract
The spacetime symmetry group of a model of a relativistic spin 1/2 elementary
particle, which satisfies Dirac’s equation when quantized, is analysed. It is
shown that this group, larger than the Poincaré group, also contains spacetime
dilations and local rotations. It has two Casimir operators, one is the spin
and the other is the spin projection on the body frame. Its similarities with
the standard model are discussed. If we consider this last spin observable
as describing isospin, then, this Dirac particle represents a massive system of
spin 1/2 and isospin 1/2. There are two possible irreducible representations
of these kinds of particles, a colourless or a coloured one, where the coloured
observable is also another spin contribution related to the zitterbewegung. It
is the spin, with its twofold structure, the only intrinsic property of this Dirac
elementary particle.

PACS numbers: 11.30.Ly, 11.10.Ef, 11.15.Kc

1. Introduction and scope

The kinematical group of a relativistic formalism is the Poincaré group. The Hilbert space of
states of an elementary particle carries an irreducible representation of the Poincaré group. The
intrinsic properties of an elementary particle are thus associated with the Casimir invariants
of its symmetry group. The Poincaré group has two Casimir operators whose eigenvalues
define two intrinsic properties of elementary particles, namely the mass and spin. Elementary
matter, in addition to mass and spin, has another set of properties such as electric charge,
isospin, baryonic and leptonic number, strangeness, etc, whose origin is not clearly connected
to any spacetime symmetry group. They are supposed to be related to some internal symmetry
groups. The adjective internal is used here to mean that this symmetry comes from some
unknown degrees of freedom, whose geometrical interpretation is not very clear and perhaps
suggesting that they are not connected with any spacetime transformations. In this paper, we
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shall consider a classical Poincaré invariant model of an elementary spinning particle which
satisfies Dirac’s equation when quantized. The aim of this work is to show that it has a larger
spacetime symmetry group than the Poincaré group, which will be analysed in detail, for the
classical model and its quantum mechanical representation. The kinematical formalism of
elementary particles developed by the author [1] defines a classical elementary particle as
a mechanical system whose kinematical space is a homogeneous space of the kinematical
group of spacetime transformations. The kinematical space of any mechanical system is, by
definition, the manifold spanned by the variables which define the initial and final states of
the system in the variational description. It is a manifold larger than the configuration space
and it consists of the time variable and the independent degrees of freedom and their time
derivatives up to one order less than the highest order they have in the Lagrangian function
which defines the action integral. Conversely, if the kinematical space of a mechanical system
is known, then, necessarily, the Lagrangian for this system is a function of these kinematical
variables and their next order time derivative. Remark that, as a general statement, we do
not restrict the Lagrangians to depend only on the first time derivatives of the degrees of
freedom. We lay emphasis on the description of the classical formalism in terms of the end
point variables of the variational approach. The advantage of this formalism with respect to
other approaches for describing classical spinning particles is outlined in chapter 5 of [1],
where a comparative analysis of different models is performed. One of the features is that
any classical system which fulfils with this classical definition of elementary particle has the
property that, when quantized, its Hilbert space is a representation space of a projective unitary
irreducible representation of the kinematical group. It thus complies with Wigner’s definition
of an elementary particle in the quantum formalism [2]. Another is that it is not necessary
to postulate any particular Lagrangian. It is sufficient to fix the kinematical variables (which
span a homogeneous space of the Poincaré group) for describing some plausible elementary
models. In particular, if the variational formalism is stated in terms of some arbitrary and
Poincaré invariant evolution parameter τ , then the Lagrangian of any mechanical system
is a homogeneous function of first degree of the τ -derivatives of the kinematical variables.
Feynman’s quantization shows the importance of the end point variables of the variational
formalism. They are the only variables which survive after every path integral and Feynman’s
probability amplitude is an explicit function of all of them and not of the independent degrees
of freedom.

The physical interest of this work is to analyse the symmetries of a model of a spinning
Dirac particle described within this framework which has the property that its centre of mass
and centre of charge are different points. It has been proven recently that the electromagnetic
interaction of two of these particles with the same charge produces metastable bound states
provided the spins of both particles are parallel and their relative separation, centre of mass
velocity and internal phase fulfil certain requirements [3]. Electromagnetism does not allow
the possibility of the formation of bound pairs for spinless point particles of the same charge.
Nevertheless, two of these spinning particles, although the force between the charges is
repulsive, can become attractive for the motion of their centre of masses, provided the two
particles are separated below Compton’s wavelength. Electromagnetism does not forbid the
existence of bound pairs of this kind of spinning Dirac particles.

Because the variational formalism when written in terms of the kinematical variables
seems to be not widespread we shall briefly describe some of its basic features in sections 2–4.
Very technical details are left for a reading of the original publications. Section 2 is devoted to a
particular parameterization of the Poincaré group in order to properly interpret the geometrical
meaning of the variables which span the different homogeneous spaces. These variables will be
treated as the kinematical variables of the corresponding elementary systems. In section 3, we



Spacetime symmetry group of an elementary particle 4293

consider the classical model which satisfies Dirac’s equation when quantized and we describe
its main features. This Dirac particle is a system of six degrees of freedom. Three represent the
position of a point (the position of the charge of the particle) which moves at the speed of light
and the other three represent its orientation in space. It is a point-like particle with orientation.
The Lagrangian will also depend on the acceleration of the point and of the angular velocity
of its local oriented frame. Section 4 shows how Feynman’s quantization of the kinematical
formalism describes the wavefunction and the differential structure of the generators of the
symmetry groups in this representation. In section 5 we analyse the additional spacetime
symmetries of the model, which reduce to the spacetime dilations and the local rotations of
the body frame. Section 6 deals with the analysis of the complete spacetime symmetry group,
its Casimir operators and the irreducible representations for this spin 1/2 Dirac particle. Once
the symmetry group has been enlarged, a greater kinematical space can be defined. Chapter 7
considers the requirement of enlarging the kinematical space, by adding a classical phase, in
order for the system to still satisfy Dirac’s equation. Finally, section 8 contains a summary of
the main results and some final comments about the relationship between this new symmetry
group and the standard model. The explicit calculation of the structure of the generators is
included in the appendix.

2. The kinematical variables

Any group element g of the Poincaré group can be parameterized by the ten variables
g ≡ (t, r, v, α) which have the following dimensions and domains: t ∈ R is a time variable
which describes the time translation, r ∈ R

3 are three position variables associated with
the three-dimensional space translations, v ∈ R

3, with v < c, are three velocity parameters
which define the relative velocity between observers and, finally, the three dimensionless
α ∈ SO(3), which represent the relative orientation between the corresponding Cartesian
frames. These dimensions will be shared by the variables which define the corresponding
homogeneous spaces of the Poincaré group. The manifold spanned by the variables t and
r is the spacetime manifold, which is clearly a homogeneous space of the Poincaré group.
According to our definition of elementary particle, it represents the kinematical space of the
spinless point particle. These variables are interpreted as the time and position of the particle.
The corresponding Lagrangian will be, in general, a function of t, r and its time derivative,
the velocity of the point r. It can be easily deduced from invariance requirements and it is
uniquely defined up to a total τ -derivative [1]. To describe spinning particles we have to
consider larger homogeneous spaces than the spacetime manifold. The Poincaré group has
three maximal homogeneous spaces spanned by the above ten variables but with some minor
restrictions. One is the complete group manifold, where the parameter v < c. Another is
that manifold with the constraint v = c, and it will therefore describe particles where the
point r moves at the speed of light, and finally the manifold where v > c and this allows us
to describe tachyonic matter. The remaining variables t, r and α have the same domains as
above. In all three cases, the initial and final states of a classical elementary particle in the
variational approach are described by the measurement of a time t, the position of a point r,
the velocity of this point v and the orientation of the particle α, which can be interpreted as
the orientation of a local instantaneous frame of unit axis ei , i = 1, 2, 3, with origin at the
point r. The difference between the three cases lies in the intrinsic character of the velocity
parameter v which can be used to describe particles whose position r moves always with
velocity below, above or equal to c. The Lagrangian for describing these systems will be in
general a function of these ten variables, with the corresponding constraint on the v variable,
and also of their time derivatives. It will be thus also a function of the acceleration of the



4294 M Rivas

point r and of the angular velocity ω of the motion of the body local frame. This is what
the general kinematical formalism establishes. The systems which satisfy Dirac’s equation
when quantized correspond to the systems for which v = c. For these systems the point r
represents the position of the charge of the particle, but not the centre of mass q, which, for
a spinning particle, results a different point than r. This separation is analytically related to
the dependence of the Lagrangian on the acceleration. The spin structure is related to this
separation between r and q and its relative motion and, also to the rotation of the body frame
with angular velocity ω. This separation between the centre of mass and centre of charge of a
spinning particle is a feature also shared by some other spinning models which can be found
in chapter 5 of [1]. All these particle models represent point-like objects with orientation but
whose centre of mass is a different point than the point where the charge of the particle is
located. The classical dynamical equation satisfied by the position r of these systems was
analysed in [3]. The quantization of the models with v = c = 1 shows that the corresponding
quantum systems are only spin 1/2 particles. No higher spin elementary systems are obtained
when using that manifold as a kinematical space. In the tachyonic case only spin 1 is allowed.
For particles with v < c the maximum spin is only 3/2.

3. The classical model

Let us consider any regular Lagrangian system whose Lagrangian depends on time t, on
the n independent degrees of freedom qi, i = 1, . . . , n and their time derivatives up to a finite
order k, q

(k)
i ≡ dkqi/dt k . We denote the kinematical variables in the following form:

x0 = t, xi = qi, xn+i = q
(1)
i , · · · x(k−1)n+i = q

(k−1)
i , i = 1, . . . , n.

This system of n degrees of freedom has a kinematical space of dimension kn + 1. We
can always write this Lagrangian in terms of the kinematical variables x and their next order
τ -derivative ẋ, where τ is any arbitrary, Poincaré invariant, evolution parameter. The advantage
of working with an arbitrary evolution parameter is that the Lagrangian expressed in this way
becomes a homogeneous function of first degree of the τ -derivatives of the kinematical
variables. In fact, each time derivative q

(r)
i can be written as a quotient of two τ -derivatives of

two kinematical variables q
(r)
i = q̇

(r−1)
i

/
ṫ , and thus∫ t2

t1

L(t, q, . . . , q(k)) dt =
∫ τ2

τ1

L(t, q, q̇/ṫ , . . . , q̇(k−1)/ṫ)ṫ dτ =
∫ τ2

τ1

L(x, ẋ) dτ.

It is the last ṫ term which makes the integrand a homogeneous function of first degree of the
derivatives of the kinematical variables. It thus satisfies Euler’s theorem for homogeneous
functions

L(x, ẋ) = ∂L

∂ẋi

ẋi ≡ Fi(x, ẋ)ẋi , i = 0, 1, . . . , kn. (1)

The generalized coordinates are the degrees of freedom and their time derivatives up to order
k − 1, so that there are up to kn generalized momenta pis which are defined by

pis =
k−s∑
r=0

dr

dt r
F(r+s−1)n+i , i = 1, . . . , n, s = 1, . . . , k.

The Hamiltonian is

H = pisq
(s)
i − L,

and the phase space is thus of dimension 2kn.
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If G is a r-parameter symmetry group of parameters gα, α = 1, . . . , r , which leaves
invariant the Lagrangian and transforms infinitesimally the kinematical variables in the form

x ′
j = xj + Mjα(x)δgα, j = 0, 1, . . . , kn, α = 1, . . . , r,

the r conserved Noether’s observables are given by

Nα = HM0α(x) − pisM{(s−1)n+i}α(x), i = 1, . . . , n, s = 1, . . . k.

The advantage of this formulation is that we can obtain general expressions for the conserved
quantities in terms of the above Fi(x, ẋ) functions, and their time derivatives, which are
homogeneous functions of zeroth degree of the variables ẋi and of the way the kinematical
variables transform Mjα(x). Let us consider now any Lagrangian system whose kinematical
space is spanned by the variables (t, r, v, α), with v = c. The general form of any Lagrangian
of this kind of systems is

L = ṫT + ṙ · R + v̇ · V + α̇ · A,

where according to the above homogeneity property (1), T = ∂L/∂ṫ, R = ∂L/∂ ṙ, V =
∂L/∂v̇ and A = ∂L/∂α̇. If instead of α̇ we consider the angular velocity ω, which is a linear
function of the α̇, the last term α̇ · A, can be transformed into ω · W , where Wi = ∂L/∂ωi .

We thus get the following conserved quantities from the invariance of the Lagrangian
under the Poincaré group. These expressions are independent of the particular Lagrangian
we take, as far as we keep fixed the corresponding kinematical space. The energy and linear
momentum

H = −T − v · dV

dt
, P = R − dV

dt
, (2)

and the kinematical and angular momenta are, respectively,

K = Hr − P t + v × S, J = r × P + S, S = v × V + W . (3)

S is the translation invariant part of the angular momentum. It is the classical equivalent of
Dirac’s spin observable. It is the sum of two parts S = Z + W . The Z = v × V part comes
from the dependence of the Lagrangian on v̇ and the W part from the dependence on the
angular velocity. The time derivative of the conserved J leads to dS/dt = P × v. Since
in general the structure of the linear momentum, given in (2), shows that P and v are not
collinear vectors, the spin S is only constant in the centre of mass frame. In this frame S is
a constant vector and H = ±m, P = K = 0, so that for positive energy H = m particles
we get, from the expression of the kinematical momentum (3), the dynamical equation for the
point r

r = 1

m
S × v. (4)

The point r moves in circles at the speed of light on a plane orthogonal to the constant spin,
as depicted in figure 1. For negative energy H = −m we get the time reversed motion.

The motion of the charge around the centre of mass is a circular motion, known as the
zitterbewegung, of radius R = S/mc, i.e., half Compton’s wavelength when quantized, and
angular frequency ω = mc2/S. Since the energy H is not definite positive we can describe
matter and antimatter. They have a different chirality. Matter is left handed while antimatter
is right handed. For matter, once the spin direction is fixed, the motion of the charge is
counterclockwise when looking along the spin direction. The phase of this internal motion of
the charge increases in the opposite direction to the usual sign convention for p-forms. The
motion is clockwise for antimatter.
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Figure 1. Motion of the charge of the particle (H = m > 0), in the centre of mass frame. The
total spin S is the sum of the orbital part Z and the rotational part of the body frame W . It is not
depicted in the local body frame, with origin at point r, ei , i = 1, 2, 3, which rotates with angular
velocity ω. The motion of the charge, with respect to the fixed spin direction, is left handed.

The classical expression equivalent to Dirac’s equation is obtained by taking the time
derivative of the kinematical momentum K in (3), and a subsequent scalar product with v,
i.e., the linear relationship between H and P is given by

H = P · v + S ·
(

dv

dt
× v

)
. (5)

It is the quantum representation of this relationship between observables when acting on the
wavefunction of the system, which produces Dirac’s equation [2].

4. Quantization of the model

If we analyse this classical particle in the centre of mass frame it becomes a mechanical system
of three degrees of freedom. These are the x and y coordinates of the point charge on the plane
and the phase α of the rotation of the body axis with angular velocity ω. But this phase is the
same as the phase of the orbital motion and because this motion is a circle of constant radius
only one degree of freedom is left, for instance, the x coordinate. In the centre of mass frame,
the system is thus equivalent to a one-dimensional harmonic oscillator of angular frequency
ω = mc2/S in its ground state. The ground energy of this one-dimensional harmonic oscillator
h̄ω/2 = mc2 for particles, so that the classical constant parameter S = h̄/2. All Lagrangian
systems defined with this kinematical space have this behaviour and represent spin 1/2 particles
when quantized. If this model represents an elementary particle it has no excited states and
thus no higher spin model can be obtained which has the same kinematical space as this one.

When quantizing any mechanical system described by means of this kinematical
formalism, through Feynman’s path integral approach [2], the quantization leads to the
following results:

(i) If x are the kinematical variables of the variational approach, Feynman’s kernel K(x1, x2)

which describes the probability amplitude for the evolution of the system between the
initial point x1 and the final point x2 is only a function (more properly a distribution) of
the end point kinematical variables.

(ii) The wavefunction of the quantized system is a complex squared integrable function of
these variables ψ(x), with respect to some suitable invariant measure over the kinematical
space.
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(iii) If G is a symmetry group of parameters gα , which transform infinitesimally the kinematical
variables in the form:

x ′
j = xj + Mjα(x)δgα,

the representation of the generators is given by the self-adjoint operators

Xα = −iMjα(x)
∂

∂xj

.

In our model of the Dirac particle, the wavefunction becomes a complex squared integrable
function defined on the kinematical space ψ(t, r, v, α). The Poincaré group unitary realization
over the corresponding Hilbert space has the usual self-adjoint generators. They are
represented by the differential operators, with respect to the kinematical variables, which
are obtained in detail in the appendix:

H = i∂/∂t, Pi = −i∂/∂ri,

Ki = iri∂/∂t + it∂/∂ri + εijkvjSk, Ji = −iεijkrj ∂/∂rk + Sj

or in 3-vector form

H = i∂/∂t, P = −i∇,

K = ir∂/∂t + it∇ + v × S, J = −ir × ∇ + S = L + S.

The spin operator S is given by

Si = −iεijkvj ∂/∂vk + Wi, or S = −iv × ∇v + W = Z + W .

∇v is the gradient operator with respect to the vi variables and the W operator involves
differential operators with respect to the orientation variables. Its structure depends on the
selection of the variables which represent the orientation and which correspond to the different
parameterizations of the rotation group. In the normal or canonical parameterization of the
rotation group, every rotation is characterized by a 3-vector α = αn, where n is a unit vector
along the rotation axis and α is the clockwise rotated angle. If we represent the unit vector n
by the usual polar and azimuthal angles (θ, φ), θ ∈ [0, π ] and φ ∈ [0, 2π ], then every rotation
is parameterized by the three dimensionless variables (α, θ, φ). When acting the rotation
group on this manifold, the W operators take the form given in equations (A.4)–(A.6).

With the definitions pµ ≡ (H, P ) and J 0i = −J i0 = Ki, J
ij = −J ji = εijkJk ,

[pµ, pν] = 0, [Jµν, J σρ] = iηµσJ νρ + iηνρJµσ − iηµσJ νρ − iηνρJµσ ,

[Jµν, pρ] = iηµρpν − iηνρpµ,

where ηµν is Minkowski’s metric tensor, are the usual commutation relations of the Poincaré
group.

The angular momentum operator J contains the orbital angular momentum operator L
and the spin part S, which is translation invariant and has a twofold structure. One, Z, has
the form of an orbital angular momentum −iv × ∇v in terms of the velocity variables. It is
related to the zitterbewegung part of the spin and quantizes with integer eigenvalues. Finally,
another related to the orientation variables W which can have either integer and half integer
eigenvalues and which is related, in the classical case, to the rotation of the particle. They
satisfy the commutation relations

[Zi, Zj ] = iεijkZk, [Wi,Wj ] = iεijkWk, [Zi,Wk] = 0, [Si, Sj ] = iεijkSk.

The structure of the generators of rotations J contains differential operators with respect to
the kinematical variables which are transformed when we rotate observer’s axis, so that the L
part is associated with the change of the variable r, the Z part is associated with the change of
the velocity v under rotations and finally the W part contains the contribution of the change
of the orientation of the body frame.
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5. Additional spacetime symmetries

Up to this point we have outlined the main classical and quantum mechanical features of the
kinematical formalism and of the model of the elementary spinning particle of spin 1/2 we
want to further analyse.

The kinematical variables of this classical spinning elementary particle are reduced to
time t, position r, velocity v and orientation α, but the velocity is always v = c. It is always
1 in natural units. If the particle has mass m �= 0 and spin s �= 0, we can also define a
natural unit of length s/mc and a natural unit of time s/mc2. The unit of length is the radius
of the zitterbewegung motion of figure 1, and the unit of time is the time employed by the
charge, in the centre of mass frame, during a complete turn. This implies that the whole set of
kinematical variables and their time derivatives can be taken dimensionless, and the classical
formalism is therefore invariant under spacetime dilations which do not modify the speed of
light.

It turns out that although we started with the Poincaré group as the basic spacetime
symmetry group, this kind of massive spinning Dirac particles has a larger symmetry group.
It also contains at least spacetime dilations with generator D. The new conserved Noether
observable takes the form

D = tH − r · P . (6)

Let R(β) be an arbitrary rotation which changes observer’s axes. The action of this
arbitrary rotation R(β) on the kinematical variables is

t ′ = t, r′ = R(β)r, v′ = R(β)v, R(α′) = R(β)R(α),

and this is the reason why the generators J of rotations involve differential operators with
respect to all these variables, the time excluded. The orientation of the particle, represented
by the variables α, or the equivalent orthogonal rotation matrix R(α), is interpreted as the
orientation of an hypothetical Cartesian frame of unit axis ei , i = 1, 2, 3, located at point
r. It has no physical reality but can be interpreted as the corresponding Cartesian frame of
some instantaneous inertial observer with origin at that point. But the selection of this frame
is completely arbitrary so that the formalism is independent of its actual value. This means
that, in addition to the above rotation group which modifies the laboratory axes, there will
be another rotation group of elements R(γ) which modifies only the orientation variables α,
without modifying the variables r and v, i.e., the rotation only of the body frame:

t ′ = t, r′ = r, v′ = v, R(α′) = R(γ)R(α). (7)

The generators of this new rotation group, which affects only the orientation variables, will be
the projection of the angular momentum generators W onto the body axes. From Noether’s
theorem the corresponding classical conserved observables are

Ti = W · ei , (8)

where ei are the three orthogonal unit vectors which define the body axis.
If R(α) is the orthogonal rotation matrix which describes the orientation of the particle,

when considered by columns these columns describe the components of the three orthogonal
unit vectors ei , i = 1, 2, 3. Equations (7) correspond to the transformation e′

i = R(γ)ei of
the body frame.

The Wi operators represent the components of the angular momentum operators associated
with the change of orientation of the particle and projected in the laboratory frame. The
corresponding conserved quantities (8) are the components of the angular momentum operators
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projected onto the body frame Ti = ei · W . When quantizing the system they are given by
the differential operators (A.10)–(A.12) of the appendix and satisfy

T 2 = W 2, [Ti, Tj ] = iεijkTk,

[Ti,Kj ] = [Ti, Jj ] = [Ti,H ] = [Ti,D] = [Ti, Pj ] = 0.

We can see that the self-adjoint operators Ti generate another SU(2) group which is the
representation of the rotation group which modifies only the orientation variables, commutes
with the rotation group generated by Jj , and with the whole enlarged Poincaré group, including
spacetime dilations.

Since we expect that the formalism is independent of the orientation variables we have
another SO(3) group of spacetime symmetries of the particle.

6. Analysis of the enlarged symmetry group

Let H, P , K and J be the generators of the Poincaré group P . With the usual identification
of pµ ≡ (H, P ) as the four-momentum operators and wµ ≡ (P · J,HJ − K × P ) as the
Pauli–Lubanski 4-vector operator, the two Casimir operators of the Poincaré group are

C1 = pµpµ, C2 = −wµwµ.

These two Casimir operators, if measured in the centre of mass frame where P = K = 0,
reduce respectively in an irreducible representation to C1 = m2 and C2 = H 2J 2 = m2s(s +1).
The two parameters m and s, which characterize every irreducible representation of the
Poincaré group, represent the intrinsic properties of a Poincaré invariant elementary particle.

Let us consider the additional spacetime dilations of generator D. The action of this
transformation on the kinematical variables is

t ′ = eλt, r′ = eλr, v′ = v, α′ = α.

Let us denote this enlargement of the Poincaré group, sometimes called the Weyl group, byPD .
In the quantum representation, this new generator, when acting on the above wavefunctions,
has the form

D = it∂/∂t + ir · ∇. (9)

It satisfies

[D,pµ] = −ipµ, [D, Jµν] = 0.

This enlarged group has only one Casimir operator (see [5]) which, for massive systems where
the operator C1 �= 0 is invertible, is reduced to

C = C2C
−1
1 = C−1

1 C2 ≡ C2/C1 = s(s + 1).

In the centre of mass frame, this operator is reduced to C = S2, the square of the spin operator.
By also assuming the spacetime dilation invariance this implies that the mass is not an intrinsic
property. It is the spin which is the only intrinsic property of this elementary particle. In fact,
since the radius of the internal motion is R = s/mc, a change of length and time scale
corresponds to a change of mass while keeping s and c constant. By this transformation the
elementary particle of spin 1/2 modifies its internal radius and therefore its mass and goes
into another mass state. The structure of the differential operator J = r × P + Z + W , where
the spin part S = Z + W has only s = 1/2 eigenvalue for the above model, implies that the
eigenvalue of W 2 corresponds to w = 1/2 while for the Z2 part can be reduced to the two
possibilities z = 0 or z = 1. In addition to the group PD we also consider the representation
of the local rotation group generated by Ti with eigenvalue t = w = 1/2. We thus have a
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larger spacetime symmetry group with an additional SU(2) structure when quantized. The
generators Ti commute with all generators of the group PD , and this new symmetry group
can be written as PD ⊗ SU(2)T . This new group has only two Casimir operators S2 and T 2

of eigenvalues 1/2. This justifies that our wavefunction will be written as a four-component
wavefunction. When choosing the complete commuting set of operators to classify its states
we take the operator T 2 = S2, S3 and T3 which can take the values ±1/2 and for instance
pµpµ and pµ. In this way we can separate in the wavefunction the orientation and velocity
variables from the spacetime variables,

ψ(t, r, v, α) =
i=4∑
i=1

φi(t, r)χi(v, α),

where the four χi(v, α) can be classified according to the eigenvalues |s3, t3〉. The functions
φi(t, r) can be chosen as eigenfunctions of the Klein–Gordon operator [1]

pµpµφi(t, r) = m2
i φi(t, r).

Because this operator pµpµ does not commute with the D observable, the mass eigenvalue mi

is not an intrinsic property and the corresponding value depends on the particular state φi we
consider.

For the classification of the χi(v, α) states we also have to consider the Z angular
momentum operators. Because [Z2, S2] = [Z2, T 2] = [Z2, pµ] = 0, we can choose Z2

as an additional commuting observable. It can only take integer eigenvalues when acting on
functions of the velocity variables, because it has the structure of an orbital angular momentum.
But because the total spin S = Z + W , and S2 has eigenvalue 1/2, the possible eigenvalues
of Z2 can be z = 0 or z = 1. See the appendix for the possible classification of the χi(v, α)

part, according to z = 0 which gives rise to the (A.13)–(A.16) eigenfunctions, and the z = 1
eigenfunctions (A.17)–(A.20). In this last case the eigenfunctions cannot be simultaneously
eigenfunctions of Z3. Nevertheless the expectation value of Z3 in the z = 0 basis vectors �i

is 0, while its expectation value in the z = 1 basis �i is ±2/3.

7. Enlargement of the kinematical space

Once the kinematical group has been enlarged by including spacetime dilations, we have a
new dimensionless group parameter associated with this one-parameter subgroup which can
also be used as a new kinematical variable to produce a larger homogeneous space of the
group. In fact, if we take the time derivative of the constant of the motion (6) we get

H = P · v.

If we compare this with equation (5), one term is lacking. This implies that we need, from the
classical point of view, an additional kinematical variable, a dimensionless phase β, such that
under the action of this new transformation the enlarged kinematical variables transform

t ′ = eλt, r′ = eλr, v′ = v, α′ = α, β ′ = λ + β.

From the group theoretical point of view this new dimensionless variable corresponds to the
normal dimensionless group parameter of the transformation generated by D.

From the Lagrangian point of view, the new Lagrangian also has to depend on β and β̇,
with a general structure

L = ṫT + ṙ · R + v̇ · V + ω · W + β̇B,
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with B = ∂L/∂β̇. The constant of the motion associated with the invariance of the dynamical
equations under this new transformation implies that

D = tH − r · P − B,

and the new generator in the quantum version takes the form

D = it∂/∂t + ir · ∇ + i
∂

∂β
.

In this way the last term of (5) is related to the time derivative of this last term

dB

dt
= S ·

(
dv

dt
× v

)
.

This new observable B, with dimensions of action, has a positive time derivative for particles
and a negative time derivative for antiparticles. This sign is clearly related to the sign of H. In
the centre of mass frame P = 0,H = ±mc2 = dB/dt , with solution B(t) = B(0) ± mc2t .
In units of h̄ this observable represents half the phase of the internal motion

B(t) = B(0) ± 1
2h̄ωt.

Because the additional local rotations generated by the Ti commute with the PD group, the
above kinematical variables also span a homogeneous space of the whole PD ⊗SU(2)T group
and, therefore, they represent the kinematical variables of an elementary system which has
this new group as its kinematical group of spacetime symmetries.

8. Conclusions and comments

We have analysed the spacetime symmetry group of a relativistic model of a Dirac particle.
The matter described by this model (H > 0 states) is left handed while antimatter (H < 0)

is right handed, as far as the relative orientation between the spin and the motion of the
charge is concerned. For matter, once the spin direction is fixed, the motion of the charge is
counterclockwise when looking along the spin direction. It is contained in a plane orthogonal
to the spin direction, with the usual sign convention for multivectors in the geometric algebra.
The motion is clockwise for antimatter.

This particle has a symmetry group of the Lagrangian PD ⊗ SO(3)T and PD ⊗ SU(2)T
in its quantum description, which is larger than the Poincaré group we started with as the
initial kinematical group of the model. It contains in its quantum description, in addition to
the Poincaré transformations, a U(1) group which is a unitary representation of the spacetime
dilations and also a SU(2)T group which is the unitary representation of the symmetry group
of local rotations of the body frame. The whole group has two Casimir operators S2, the
Casimir of PD and T 2 the Casimir of SU(2)T , which take the eigenvalues s = t = 1/2 for
the model considered here.

Some of the features we get have a certain resemblance to the standard model of elementary
particles, as far as kinematics is concerned. If we interpret the generators Ti of the unitary
representation of the local rotations as describing isospin and the angular momentum operators
Z related to the zitterbewegung as describing colour, an elementary particle described by this
formalism is a massive system of spin 1/2, isospin 1/2, of undetermined mass and charge.
It can be in a s3 = ±1/2 spin state and also in a t3 = ±1/2 isospin state. There are two
nonequivalent irreducible representations according to the value of the zitterbewegung part
of the spin z. It can only be a colourless particle z = 0 (lepton?) or a coloured one z = 1
in any of the three possible colour states z3 = 1, 0,−1 (quark?) but no greater z value is
allowed. The basic states can thus also be taken as eigenvectors of Z2 but not of Z3, so that
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the corresponding colour is unobservable. There is no possibility of transitions between the
coloured and colourless particles because of the orthogonality of the corresponding irreducible
representations.

Because the eigenvalues of Z3 are unobservable we also have an additional unitary group
of transformations SU(3) which transforms the three Z3 eigenvectors Y

j

i of (A.21) among
themselves and which do not change the z = 1 value of the eigenstates �i . Nevertheless,
the relationship between this new SU(3) internal group, which is not a spacetime symmetry
group, and PD ⊗ SU(2)T is not as simple as a direct product and its analysis is left to a
subsequent research.

This formalism is pure kinematical. We have made no mention of any electromagnetic,
weak or strong interaction among the different models. So that, if we find this comparison
with the standard model a little artificial, the mentioned model of Dirac particle just represents
a massive system of spin 1/2, spin projection on the body frame 1/2, of undetermined mass
and charge. It can be in a s3 = ±1/2 spin state and also in a t3 = ±1/2 when the spin is
projected on the body axis. There are two different models of these Dirac particles according
to the value of the orbital or zitterbewegung spin, z = 0 or z = 1, in any of the three possible
orbital spin states z3 = 1, 0,−1, which are unobservable, but no particle of greater z value
is allowed. It is the spin, with its twofold structure orbital and rotational, the only intrinsic
attribute of this Dirac elementary particle.
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Appendix

Under infinitesimal time and space translations of parameters δτ and δb, respectively, the
kinematical variables transform as

t ′ = t + δτ, r′ = r + δb, v′ = v, α′ = α,

so that the self-adjoint generators of translations are

H = i
∂

∂t
, P = −i∇, [H, P ] = 0.

Under an infinitesimal spacetime dilation of normal parameter δλ, they transform in the way

t ′ = t + tδλ, r′ = r + rδλ, v′ = v, α′ = α,

so that the generator takes the form

D = it
∂

∂t
+ ir · ∇ = tH − r · P , [D,H ] = −iH, [D,Pj ] = −iPj .

To describe orientation we can represent every element of the rotation group by the 3-vector
α = αn, where α is the rotated angle and n is a unit vector along the rotation axis. This is
the normal or canonical parameterization. Alternatively we can represent every rotation by
the three-vector ρ = tan(α/2)n. In this case, every rotation matrix takes the form

R(ρ)ij = 1

1 + ρ2
((1 − ρ2)δij + 2ρiρj + 2εikjρk).
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The advantage of this parameterization is that the composition of rotations R(ρ′) = R(µ)R(ρ)

takes the simple form

ρ′ = µ + ρ + µ × ρ

1 − µ · ρ
.

Under an infinitesimal rotation of parameter δµ = δα/2, in terms of the normal parameter,
the kinematical variables transform as

δt = 0, δri = −2εijkrj δµk,

δvi = −2εijkvj δµk, δρi = (δik + ρiρk + εiklρl) δµk,

so that the variation of the kinematical variables per unit of normal rotation parameter δαk is

δtk = 0, δrik = −εijkrj

δvik = −εijkvj , δρik = 1
2 [δik + ρiρk + εiklρl] ,

and the self-adjoint generators Jk are

Jk = iεijkrj

∂

∂ri

+ iεijkvj

∂

∂vi

+
1

2i

(
∂

∂ρk

+ ρkρi

∂

∂ρi

+ εiklρl

∂

∂ρi

)
.

They can be separated into three parts, according to the differential operators involved, with
respect to the three kinds of kinematical variables r, v and ρ, respectively:

J = L + Z + W , Lk = iεijkrj

∂

∂ri

,

Zk = iεijkvj

∂

∂vi

, Wk = 1

2i

(
∂

∂ρk

+ ρkρi

∂

∂ρi

+ εiklρl

∂

∂ρi

)
.

(A.1)

They satisfy the angular momentum commutation rules and commute among themselves:

[Lj , Lk] = iεjklLl, [Zj ,Zk] = iεjklZl, [Wj,Wk] = iεjklWl,

[L, Z] = [L, W ] = [Z, W ] = 0

and thus

[Jj , Jk] = iεjklJl, [J,H ] = [J,D] = 0, [Jj , Pk] = iεjklPl.

The above orientation variable ρ, under a general boost of velocity u, transforms as [1]

ρ′ = ρ + F (u, v, ρ)

1 + G(u, v, ρ)
,

where

F (u, v, ρ) = γ (u)

1 + γ (u)
(v × u + u(v · ρ) + (v × ρ) × u),

G(u, v, ρ) = γ (u)

1 + γ (u)
(v · u + u · (v × ρ)), γ (u) = (1 − u2)−1/2.

Finally, under an infinitesimal boost of value δu, γ (u) ≈ 1, the kinematical variables
transform as

δt = r · δu, δr = tδu, δv = δu − v(v · δu),

δρ = −[ρ(v · δu) + ρ((v × ρ) · δu) − v × δu − δu(v · ρ) − (v × ρ) × δu]/2,

and the variation of these variables per unit of infinitesimal velocity parameter δuj is

δtj = rj , δrij = tδij , δvij = δij − vivj

δρij = − 1
2 [ρjvi + ρiεjklvkρl − εikj vk − δij vkρk],
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so that the boost generators Kj have the form

Kj = irj

∂

∂t
+ it

∂

∂rj

+ i

(
∂

∂vj

− vjvi

∂

∂vi

)

+
1

2i

(
ρjvi

∂

∂ρi

+ ρiεjklvkρl

∂

∂ρi

− εikj vk

∂

∂ρi

− vkρk

∂

∂ρj

)
.

Similarly, the generators Kj can be decomposed into three parts, according to the
differential operators involved and we represent them with the same capital letters as in
the case of the J operators but with a tilde:

K = L̃ + Z̃ + W̃ , L̃j = irj

∂

∂t
+ it

∂

∂rj

, Z̃j = i

(
∂

∂vj

− vjvi

∂

∂vi

)
,

W̃j = 1

2i

(
ρjvi

∂

∂ρi

+ ρiεjklvkρl

∂

∂ρi

+ εjkivk

∂

∂ρi

− vkρk

∂

∂ρj

)
.

They satisfy the commutation rules:

[L̃j , L̃k] = −iεjklLl, [Z̃j , Z̃k] = −iεjklZl, [L̃, Z̃] = [L̃, W̃ ] = 0,

and also

[Kj,Kk] = −iεjklJl .

We can check that

Z̃ = v × Z, W̃ = v × W .

If we define the spin operator S = Z + W , and the part of the kinematical momentum
S̃ = Z̃ + W̃ = v × S, they satisfy

[Sj , Sk] = iεjklSl, [Sj , S̃k] = iεjkl S̃l , [̃Sj , S̃k] = −iεjklSl,

where in the last expression we have used the constraint v2 = 1. They generate the Lie algebra
of a Lorentz group which commutes with spacetime translations [S, pµ] = [S̃, pµ] = 0.

In the ρ parameterization of the rotation group, the unit vectors of the body frame
ei , i = 1, 2, 3 have the following components:

(ei )j = R(ρ)ji ,

so that the Tk = ek · W operators of projecting the rotational angular momentum W onto the
body frame are given by

Tk = 1

2i

(
∂

∂ρk

+ ρkρi

∂

∂ρi

− εiklρl

∂

∂ρi

)
. (A.2)

They differ from Wk in (A.1) by the change of ρ by −ρ, followed by a global change of sign.
They satisfy the commutation relations

[Tj , Tk] = −iεjklTl. (A.3)

The minus sign on the right-hand side of (A.3) corresponds to the difference between the
active and passive point of view of transformations. The rotation of the laboratory axis
(passive rotation) has as generators J , which satisfy [Jj , Jk] = iεjklJl . The Ti correspond to
the generators of rotations of the particle axis (active rotation), so that the generators −Ti will
also be passive generators of rotations and satisfy [−Tj ,−Tk] = iεjkl(−Tl).
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In the normal parameterization of rotations α = αn, if we describe the unit vector n
along the rotation axis by the usual polar and azimuthal angles θ and φ, respectively, so that
n ≡ (sin θ cos φ, sin θ sin φ, cos θ), the above Wi generators take the form [4]

W1 = 1

2i

[
2 sin θ cos φ

∂

∂α
+

(
cos θ cos φ

tan(α/2)
− sin φ

)
∂

∂θ

−
(

sin φ

tan(α/2) sin θ
+

cos θ cos φ

sin θ

)
∂

∂φ

]
, (A.4)

W2 = 1

2i

[
2 sin θ sin φ

∂

∂α
+

(
cos θ sin φ

tan(α/2)
+ cos φ

)
∂

∂θ

−
(

cos θ sin φ

sin θ
− cos φ

tan(α/2) sin θ

)
∂

∂φ

]
, (A.5)

W3 = 1

2i

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)

∂

∂θ
+

∂

∂φ

]
, (A.6)

W 2 = −
[

∂2

∂α2
+

1

tan(α/2)

∂

∂α
+

1

4 sin2(α/2)

{
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

}]
, (A.7)

W+ = W1 + iW2 = eiφ

2i

[
2 sin θ

∂

∂α
+

cos θ

tan(α/2)

∂

∂θ
+ i

∂

∂θ
− cos θ

sin θ

∂

∂φ
+

i

tan((α/2)) sin θ

∂

∂φ

]
,

(A.8)

W− = W1 − iW2 = e−iφ

2i

[
2 sin θ

∂

∂α
+

cos θ

tan(α/2)

∂

∂θ
− i

∂

∂θ

− cos θ

sin θ

∂

∂φ
− i

tan(α/2) sin θ

∂

∂φ

]
, (A.9)

and the passive Ti generators take the form

T1 = −i

2

[
2 sin θ cos φ

∂

∂α
+

(
cos θ cos φ

tan(α/2)
+ sin φ

)
∂

∂θ

−
(

sin φ

tan(α/2) sin θ
− cos θ cos φ

sin θ

)
∂

∂φ

]
, (A.10)

T2 = −i

2

[
2 sin θ sin φ

∂

∂α
+

(
cos θ sin φ

tan(α/2)
− cos φ

)
∂

∂θ

−
(

−cos θ sin φ

sin θ
− cos φ

tan(α/2) sin θ

)
∂

∂φ

]
, (A.11)

T3 = −i

2

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)

∂

∂θ
− ∂

∂φ

]
. (A.12)

Ti are related to Wi by changing α into −α.
The normalized eigenvectors of W 2 = T 2 and W3 and T3 for w = t = 1/2, written in the

form |w3, t3〉 (which are also eigenvectors of Z2 with z = 0) are written as |0; s3, t3〉

�1 = |1/2,−1/2〉 = i
√

2 sin(α/2) sin θ eiφ, (A.13)

�2 = |−1/2,−1/2〉 =
√

2 (cos(α/2) − i cos θ sin(α/2)) (A.14)
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�3 = |1/2, 1/2〉 = −
√

2 (cos(α/2) + i cos θ sin(α/2)) , (A.15)

�4 = |−1/2, 1/2〉 = −i
√

2 sin(α/2) sin θ e−iφ. (A.16)

The rising and lowering operators W± and the corresponding T± transform them among
each other. {�1,�2} are related by W±, and similarly {�3,�4} while the sets {�1,�3} and
{�2,�4} are separately related by T±. For instance

W−�1 = �2, W−�2 = 0, W−�3 = �4,

T−�1 = �3, T−�3 = 0, T−�2 = �4.

They form an orthonormal set with respect to the normalized invariant measure defined on
SU(2)

dg(α, θ, φ) = 1

4π2
sin2(α/2) sin θ dα dθ dφ,

α ∈ [0, 2π ], θ ∈ [0, π ], φ ∈ [0, 2π ].∫
SU(2)

dg(α, θ, φ) = 1.

The wavefunction ψ can be separated in the form

ψ(t, r, v, α) =
i=4∑
i=1

φi(t, r)χi(v, α),

where the four χi can be classified according to the eigenvalues |s3, t3〉. The functions φi(t, r)

can be chosen as eigenfunctions of the Klein–Gordon operator [1]

pµpµφi(t, r) = m2
i φi(t, r).

The functions χ(v, α) can also be separated because the total spin S with s = 1/2 is the sum
of the two parts S = Z + W , with [Z, W ] = 0, so that since the W part contributes with
w = 1/2 then the Z part contributes with z = 0 or z = 1. The z = 0 contribution corresponds
to the functions χi(α) independent of the velocity variables and the orthonormal set is the
above �i, i = 1, 2, 3, 4, which can also be written in the form |z; s3, t3〉, with z = 0.

Because Z = −iv×∇v , for the z = 1 part the eigenvectors of Z2 and Z3 are the spherical
harmonics Y i

1 (̃θ , φ̃), i = −1, 0, 1. The variables θ̃ and φ̃ represent the direction of the velocity
vector v. Because [Zi,Wj ] = 0, we can again separate the variables in the functions χ(v, α).
In this case the χ(v, α) = ∑

φi (̃θ, φ̃)λi(α, θ, φ). The four orthonormal vectors, eigenvectors
of S3, Z

2 with z = 1 and T3, |1; s3, t3〉, are now

�1 = |1; 1/2, 1/2〉 = 1√
3

(
Y 0

1 (̃θ , φ̃)�1 −
√

2Y 1
1 (̃θ , φ̃)�2

)
, (A.17)

�2 = |1;−1/2, 1/2〉 = 1√
3

( − Y 0
1 (̃θ , φ̃)�2 +

√
2Y−1

1 (̃θ , φ̃)�1
)
, (A.18)

�3 = |1; 1/2,−1/2〉 = 1√
3

(
Y 0

1 (̃θ , φ̃)�3 −
√

2Y 1
1 (̃θ , φ̃)�4

)
, (A.19)

�4 = |1;−1/2,−1/2〉 = 1√
3

( − Y 0
1 (̃θ , φ̃)�4 +

√
2Y−1

1 (̃θ , φ̃)�3
)
, (A.20)

where �i are the same as those in (A.13)–(A.16) and the spherical harmonics Y i
1 (̃θ , φ̃) are

Y 1
1 = −

√
3

8π
sin(̃θ) eiφ̃ , Y 0

1 =
√

3

4π
cos(̃θ), Y−1

1 =
√

3

8π
sin(̃θ) e−iφ̃ . (A.21)
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The Zi operators are given by

Z1 = i sin φ̃
∂

∂θ̃
+ i

cos θ̃

sin θ̃
cos φ̃

∂

∂φ̃
, Z2 = −i cos φ̃

∂

∂θ̃
+ i

cos θ̃

sin θ̃
sin φ̃

∂

∂φ̃
,

Z3 = −i
∂

∂φ̃
.

The rising and lowering operators Z± are

Z± = e±iφ̃

(
± ∂

∂θ̃
+ i

cos θ̃

sin θ̃

∂

∂φ̃

)
,

so that

Z−Y 1
1 =

√
2Y 0

1 , Z−Y 0
1 =

√
2Y−1

1 .

The four spinors �i are orthonormal with respect to the invariant measure

dg(α, θ, φ; θ̃ , φ̃) = 1

4π2
sin2(α/2) sin θ sin θ̃ dα dθ dφ d̃θ dφ̃

α ∈ [0, 2π ], θ̃ , θ ∈ [0, π ], φ̃, φ ∈ [0, 2π ].

Similarly as before, the rising and lowering operators S± = Z± + W± and the corresponding
T± transform the �i among each other. In particular {�1, �2} are related by S±, and similarly
{�3, �4} while the sets {�1, �3} and {�2, �4} are separately related by T±. This is the reason
why the general spinor in this representation is a four-component object.

In the z = 0 basis �i (A.13)–(A.16), the spin operators and the basis vectors of the body
frame take the form

S = 1

2

(
σ 0
0 σ

)
= W ,

T1 = 1

2

(
0 I

I 0

)
, T2 = 1

2

(
0 −iI
iI 0

)
, T3 = 1

2

(
I 0
0 −I

)
,

e1 = −1

3

(
0 σ

σ 0

)
, e2 = −1

3

(
0 −iσ
iσ 0

)
, e3 = −1

3

(
σ 0
0 −σ

)
,

in terms of the Pauli σ matrices and the 2 × 2 unit matrix I.
In the z = 1 basis �i (A.17)–(A.20), the operators Si and Ti take the same matrix form

as above, while ei are

e1 = 1

9

(
0 σ

σ 0

)
, e2 = 1

9

(
0 −iσ
iσ 0

)
, e3 = 1

9

(
σ 0
0 −σ

)
.

In all cases, the six Hermitian traceless matrices Si, Tj , the nine Hermitian traceless matrices
eij and the 4 × 4 unit matrix are linearly independent and they completely define a Hermitian
basis for Dirac’s algebra, so that any other translation invariant observable of the particle will
be expressed as a real linear combination of the above 16 Hermitian matrices. We used this
fact in [2] to explicitly obtain Dirac’s equation for this model.

Both representations are orthogonal to each other, 〈�i |�j 〉 = 0, and they produce two
different irreducible representations of the group, so that they describe two different kinds of
particles of the same spin 1/2.

The matrix representation of the Zi and Wi operators in the basis �i are given by

Z = 2

3

(
σ 0
0 σ

)
, W = −1

6

(
σ 0
0 σ

)
,

although �i are not eigenvectors of Z3 and W3.
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